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Critical behaviour of blend solutions of polystyrene (Mw=3.55 x 105)/poly(methyl methacrylate) 
(M w = 3.27 x l0 s) in d6-benzene was investigated by static light scattering. The phase diagram (spinodal, 
binodal and cloud points) was determined at a fixed total polymer concentration. The system had the 
lower critical solution temperature. The inverse isothermal osmotic compressibility (a~/~ci) r and correlation 
length ~ of concentration fluctuations were determined as functions of the reduced temperature e-= I T d T -  I I 
near the stability limit, where T is the absolute temperature and T~ is the spinodal temperature. Both 
(OTz/~ci) r and ~ were described by single exponents over the investigated temperature range. The critical 
exponents 7 and v for (dlt/aci)r and ~ were 1.23 and 0.63, respectively. They were very close to the 
three-dimensional Ising exponents and obviously different from the mean-field or Fisher's renormalized 
Ising exponents, as theoretically predicted by Broseta et el. 
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I N T R O D U C T I O N  

A fluid mixture containing polymers is an interesting 
system for studying critical phenomena, because it 
has a wider critical region than mixtures of small 
molecules, and because a polymeric mixture may 
show somewhat different behaviour from ordinary fluid 
mixtures, although the characteristic feature of critical 
phenomena lies in their universality independent of the 
system. Generally, critical phenomena can be classified 
into several universality classes, and both theoretical and 
experimental studies ~-t2 have been made to determine 
the class to which a polymeric system belongs. In a 
theoretical letter of de Gennes ~, the applicability of the 
classical mean-field theory near the critical point was 
discussed for the segregation of mixtures containing long, 
flexible polymer chains. The temperature interval AT* 
in which the non-classical critical behaviour was observed 
was estimated, and the following results for three cases 
of polymer systems were obtained: 

(a) Binary polymer solution (polymer/poor solvent). The 
non-classical region ranges over AT*---®-T~ with 
® being the theta temperature and T~ the critical 
temperature. In the entire temperature range from O to 
T~, where polymers tend to segregate, the mean-field 
theory cannot describe the critical behaviour. 

(b) Polymer blend (polymer A/polymer B). For a 
symmetric system consisting of two polymers with 
the same degree of polymerization N, it holds that 
A T * ~ - ( T o - T c ) N  -1, where To is the compensation 
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temperature at which the interaction vanishes. If N is 
large enough, the mean-field theory is valid in most of 
the temperature range from T o to T~. 

(c) Polymer blend solution (polymer A/polymer B/good 
solvent). Suppose a semidilute blend solution where the 
total polymer concentration c is larger than the overlap 
concentration c*. If segregation between polymers A and 
B is strong enough, the blend solution separates into 
two phases having approximately the same polymer 
concentration but different polymer composition. The 
critical behaviour was presumed to be non-classical for 
this case. 

Thus far several experimental studies for binary 
polymer solutions 2'3 and polymer blends 5-t° have been 
reported, and the results were consistent with the above 
predictions. Theoretical evaluation of AT* for an 
asymmetric polymer blend was made by Bates et el. 7. A 
recent study for polyisoprene/poly(ethylene-propylene) 
mixtures by Stepanek et el. 8 has shown that the crossover 
from classical mean-field to non-classical behaviour 
occurs with temperature approaching the spinodal 
temperature T~, and that AT* was well described by the 
theory 7. To our knowledge, no experimental study has 
been made of the critical phenomena for polymer blend 
solutions (case (c)), which we study in this work. 

A quantitative evaluation of AT* for polymer blend 
solutions has been made by Broseta et el. ~ l, who derived 
an expression based on the Ginzburg criterion and the 
blob model of a quasi-binary mixture. They concluded 
that, as long as the value of co/c* is not too much larger 
than unity, which is the case for most systems, the 
non-classical region is expected to be observed over a 
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quite wide temperature range. Here G is the total polymer 
concentration at the critical point and the overlap 
concentration c* is defined as: 

c*(vol/vol) =- M/(4rCR3FpN a/3) 

where p is density, R v is the radius of gyration of the 
polymer at infinite dilution, and N A is the Avogadro 
number. A similar conclusion has been reached by 
Benmouna et al. ~2, who used the blob concept and the 
theory of Bates et al. 7. 

Critical behaviour is usually characterized by the 
critical exponents. The critical exponents for the osmotic 
susceptibility S and the correlation length ~ are defined as: 

Soc([Z-Zs '~- '  ~Z - '  (1) 

oc T -  1 (2) 

Here, Z represents the Flory-Huggins interaction 
parameter, T is the absolute temperature, and Zs is Z 
at the spinodal temperature T~. The classical mean-field 
theory predicts that these critical exponents should 
have the values ? = 1 and v = 1/2, whereas they should 
take the three-dimensional Ising (3D Ising) values i.e. 
7 = 1.24 and v = 0.6313 in the non-classical region of fluid 
systems. The critical exponents of the non-classical region 
have in fact been observed in binary polymer solutions 
(case (a)) 2'3 and polymer blends (case (b)) 5-1°. 

In ternary mixtures such as blend solutions, the 
situation is more complex. In a mixture of polymer 
A/polymer B/solvent, there exists a small fluctuation of 
total polymer concentration c besides that of polymer 
composition (the ratio of polymer A/polymer B). The 3D 
Ising exponents are observed only if Tapproaches T~ (or 
T~) with a fixed chemical potential of both polymers, that 
is, if the observed fluctuation is only in the polymer 
composition. However, under practical experimental 
conditions with a fixed total polymer concentration, 
fluctuations of the total polymer concentration become 
appreciable in the vicinity of the critical point. The 
divergence of concentration fluctuations is expected to 
result in a shift of T~ and the appearance of Fisher's 
renormalized Ising exponents ~4. The exponents 7 and v 
become ?* and v* given as 1;*= I;/(1 - ~ )  and v* = v/(1 -:¢). 
Here ~ is the critical exponent of the heat capacity, taking 
the value of 0.1113. The renormalized exponents have 
been observed in ternary mixtures of small molecules 15. 
According to the theory of Broseta et al. 1~ for blend 
solution systems, however, the temperature interval 
AT**/T~ in which the renormalized Ising exponents may 
be observed is negligibly small, and the critical exponents 
are expected not be be of the renormalized Ising type, 
but of the 3D Ising type. 

Figure 1 summarizes the theoretical prediction of 
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Ts 

Figure 1 Universality classes in the temperature region near the 
spinodal temperature T~ of polymer A/polymer B/good solvent systems 

Table 1 Characteristics, cloud temperature T~I and spinodal temperature 
T~ of PS/PMMA/d6-Bz mixtures 

Sample c Tel T~ 
code (vol%) PS/PMMA" (°C) (°C) 

PS22 8.15 22.0/78.0 
PS25 8.16 24.9/75.1 40.6M3.6 62.7 
PS32 8.17 32.0/68.0 
PS36 8.19 35.8/64.2 
PS42 8.19 41.5/58.5 31.4-31.6 32.7 
PS53 8.29 52.6/47.4 24.1-25.1 26.0 
PS63 8.37 63.4/36.6 26.3-28.4 32.8 

Volume ratio 

universality classes in a temperature region near the 
spinodal temperature T~ in a polymer A/polymer B/good 
solvent system. The main purpose of this paper is to 
elucidate the universality class of a polymer blend 
solution. We have selected polystyrene/poly(methyl 
methacrylate)/d6-benzene as the sample and found that 
the system has a lower critical solution temperature 
(LCST). Values of 7 and v have been determined by means 
of static light scattering, and compared with the theory 
of Broseta et al. 11. 

EXPERIMENTAL 

Materials 
Polystyrene (PS) was a product of Tosoh Co. and its 

weight-average molecular weight M w and polydispersity 
index Mw/M n were 3.55 x 105 and 1.02, respectively. 
Poly(methyl methacrylate) (PMMA) with Mw = 3.27 x 105 
and M w / M , ~  1.10 was a product of Pressure Chemical 
Co. Deuterated benzene (d6-Bz) with 99.7% deuteration 
was purchased from Merck Sharp & Dohme Co., and 
purified by distillation under reduced pressure. 

Sample preparation 
Deuterated benzene solutions with a fixed total 

polymer concentration of 8.2vo1% were prepared as 
follows. Known amounts of PS and PMMA were first 
dissolved in hydrogenated benzene to make a dilute 
solution that was filtered with a Millipore filter of 0.22 #m 
pore diameter into a glass tube of 4.2 mm inner diameter. 
After removal of hydrogenated benzene by evaporation 
under vacuum, d6-Bz was added through a filter into 
the sample tube to make a solution of the desired 
concentration. The sample tube was flame sealed after 
air in the tube was replaced with nitrogen gas. The 
samples thus prepared are listed in Table 1. 

Light scattering 
Details of the light scattering apparatus are described 

elsewhere t 6. An argon-ion laser operated at 488.0 nm was 
used as the light source. A sample tube was immersed in 
an index-matched oil bath whose temperature was 
controlled to 0.05°C. Turbidity r was calculated from the 
Rayleigh ratio 17 to be 1.6 x 10 -1 cm -1 in the maximum 
case; thus attenuation zd, where optical path d = 0.42 cm, 
of the scattered light was less than 7.0 x 10 -2. In most 
cases zd was less than 2 x 10 -2 and had a negligible 
effect on the determination of the critical exponents. 
Theoretical calculation has shown that the multiple 
scattering effect is of the same order as or less than 
attenuation is. Thus no correction of scattered intensity 
was made for attenuation and multiple scattering. 
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Most of the scattered light intensity comes from 
fluctuation of PS/PMMA composition near the critical 
point: in the temperature range where PS/PMMA/d6-Bz 
solution showed critical behaviour, the scattering 
intensity of a binary PS/d6-Bz solution of the same 
polymer concentration was confirmed to be 1/100 to 
1/1000 times that of PS/PMMA/d6-Bz. The wavenumber 
q dependence of the integrated scattered intensity l(q) 
was well described by the Ornstein-Zernike equation: 

I(O)/I(q) = 1 + q2~2 (3) 

as indicated by the good linear relation between I-t(q) 
and q2 shown in Figure 2, where the results of the sample 
PS42 are presented as examples. Correlation length 
and 1-1(0) were determined from I(q) by least-squares 
fitting to the Ornstein-Zernike equation (3). 

Since d6-Bz, whose refractive index is 1.5119, is 
regarded as an isorefractive solvent of PMMA, the 
scattered intensity I(q) is proportional to the structure 
function Sll(q)=(6cl(q)6cl(-q)), where 6c1(q) is the 
Fourier transform of the concentration fluctuation of PS 
(component 1). S~(O) is related to the inverse osmotic 
compressibility (c~n/~?cl) r and thus: 

cl c, 
- - o c  = (4) t, cl) I(0) $1,(0) kBT 

where ka is the Boltzmann constant and v is the volume 
of the monomer. It must be noted that isorefractivity of 
d6-Bz to PMMA is not a condition to be strictly satisfied 
as long as we do not discuss absolute values of osmotic 
compressibility, because it has been suggested that all 
structure functions Su=(q6cj)  diverge in the same 
way 12. On the basis of equation (4), the inverse osmotic 
compressibility (On/~c 1)r or inverse susceptibility S- 1 was 
evaluated in an arbitrary scale: 

(c~l&t) r ~ TII(O) (5) 
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Figure 2 Ornstein-Zernike plots o f / -  l(q) vs. q2 for PS42: (O) 20.2°C; 
(0) 22.1°C; (D) 26.2°C; (m) 30.9°C 

Binodal 
Coexisting compositions were determined from volume 

ratios of two coexisting phases. We neglected the 
difference in solvent goodness for both component 
polymers in the calculation and assumed that coexisting 
phases had the same total polymer concentration. 

RESULTS AND DISCUSSION 

Figures 3 and 4 show the temperature dependences 
of (On/Ocl)T and 4, respectively. As temperature T 
approached the stability limit, (On/Ocl)r decreased to zero 
and ~ diverged. It was observed that (On/Ocl)T of 
PS53 and PS63 increased again at high temperature. 
Corresponding to this upturn in (On/dCl)r, a downturn 
in ¢ was observed at high temperature. Similar 
phenomena were observed in polymer blends 5'6'~° and 
attributed to phase separation. These inflection points 
were taken as cloud points T~l. The spinodal temperature 
Ts, together with the critical exponent ? for susceptibility, 
was determined by fitting the data of (dn/Oca)T to the 
following equation: 

\ & # t o  (6) 

where e is defined by: 

e = ITs/T- 1[ (7) 

The cloud temperatures Tel and the spinodal temperatures 
T~ are listed in Table 1 and shown in Figure 5. In 
Figure 5, coexisting compositions at a fixed total polymer 
concentration 8.2 vol% are also shown. Abscissa ~PS is 
composition of PS, i.e. volume fraction of PS in the total 
volume of polymers (~PS + ~PM~A = 1). The solution was 
miscible at lower temperatures and the lower critical point 
was estimated to be ~c = 0.48_ 0.02 and Tc- 27°C from 
both the intersection of the line connecting the midpoints 
of tie lines with the binodal curve and the point where 
the binodal curve contacts with the spinodal curve. The 
critical concentration appeared to be consistent with the 
results of other works 2°-22, as shown in Figure 6, 
where the critical total polymer concentration e~, at 
temperatures relatively close to the present To, of 
hydrogenated benzene solutions of blends of PS and 
PMMA having approximately the same molecular 
weights are plotted against the average molecular weight 
of polymers in double-logarithmic scale. It is observed 
that the phase diagram has asymmetric shape, which is 
considered to reflect asymmetry in the solvent goodness 
of d6-Bz for both polymers, because hydrogenated 
benzene is known to have a slightly stronger affinity for 
PS than for PMMA. The LCST-type phase diagram 
suggests a positive temperature dependence of the 
interaction parameter ZPS/PMMA between PS and PMMA 
in benzene solution, while a negative temperature 
dependence of ZPS/PMMA in the bulk system has been 
reported by Higashida et al. z3'24. They estimated ZPS/PMMA 
from interfacial thickness measured by ellipsometry and 
referred to the unpublished work by Ougisawa, who 
obtained a UCST-type phase diagram for a blend 
of low-molecular-weight PS and PMMA. Using the 
evaluated T~, the critical exponent v for the correlation 
length ~ was determined by fitting ~ to the equation: 

= ~o~-  v (8) 
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Figure 3 Temperature dependence of the inverse isothermal osmotic 
compressibility (an/t?c~) r for samples: (©) PS25; ( • )  PS42; (Vq) PS53; 
(A) PS63. The inset shows an enlargement of the region near 
(O~/~C~)r = 0 

from those of the mean-field model (7 = 1 and v= 1/2) 
or the renormalized Ising model (7"= 1.39 and v* =0.71 
for ct=0.11). We observed only a 3D Ising region 
in the investigated temperature range and Fisher's 
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Figure 4 Temperature dependence of correlation length ~. Symbols 
are the same as in Figure 3 

The critical exponents 7 and v and the prefactor are listed 
in Table 2. 

Figures 7 and 8 show double-logarithmic plots of 
(~?n/dcl) T and ~ respectively against e. All plots show good 
linearity, which indicates that (On/OCl)T and ¢ are well 
described by power laws. Although the exponent 7 seemed 
to decrease slightly and the exponent v seemed to increase 
slightly as the composition departed from the critical 
one, 7 and v for four different compositions were 
approximately the same, as seen in Table 2. We 
obtained 7= 1.20 and v=0.65 as mean values of all 
four data, and I;= 1.23 and v=0.63 as mean values of 
two data for compositions ($42, $53) close to the critical 
point. These are very close to those of the 3D Ising 
model (7 = 1.24 and v=0.63), and obviously different 

q b p S  
Figure 5 Phase diagram of PS/PMMA/d6-Bz system at a fixed total 
polymer concentration 8.2 vol%. qYs on the abscissa is PS composition 
in the total volume of polymers. Symbols: (D) binodal points; (A) cloud 
points; (O) spinodal points; (O) midpoints ofbinodal points (diameter) 
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Figure 6 Plots of critical total polymer concentration cc against 
molecular weight Mw around room temperature for hydrogenated or 
deuterated benzene solution of symmetrical PS/PMMA blend. Mw on 
the abscissa is the average of molecular weights of PS and PMMA. 
Symbols: (A) hydrogenated benzene solution (Kaddonr et al.2°'21); 
(O) hydrogenated benzene solution (Okada et a/.22); (•1) deuterated 
benzene solution (this work); ( ) prediction by the renormalization 
group theory (cc~ Mw °'63) 

Table 2 Critical exponents, prefactor and investigated range of 

Sample ~ o  

code y v (gn/#cOro" (nm) ~(c)/4 x 10 2 

PS25 1.18 o 0.654 16.0 7 .65 4.39-8.43 
PS42 1.256 0.628 19.6 6.91 0.59-3.87 
PS53 1.20~ 0.64 o 13.6 6 .88  1.26M..57 
PS63 1.16¢ 0.660 14.1 6 .28  2.45-5.78 

"In arbitrary units 
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Figure 7 Double-logarithmic plots of (07~/OeOr vs. e. Symbols are the 
same as in Figure 3 
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Figure 8 Double-logarithmic plots of ~ vs. e. Symbols are the same 
as in Figure 3 

renormalization effect was not detectable in the critical 
scattering, though slight asymmetry in the solvent affinity 
exists in the system. This is consistent with the theoretical 
prediction by Broseta et al. ~. That is, the critical 
behaviour of a polymer/polymer/good solvent system can 
be described by the 3D Ising model under practical 
experimental conditions. Based on the Ginzburg criterion, 
Broseta et al. ~ derived expressions of AT* and AT** 
for a symmetric blend solution: 

AT*_IZ*-Z~I_16n2 (_cS]-t/'3"-') 
T~ Z, 3K 3 \e*/  (9) 

AT**_ Iz**-z,I V (10) ! / 

Z z~ \R~(e)/ 

where cr (-~0.588) is the swelling exponent defined by 
RF ~" M ~ with radius of gyration R F of an isolated polymer 
chain in a good solvent, KR is a universal constant 
independent of the system, and Rg(C) is radius of gyration 

in a semidilute solution, which is related to c by: 

R2(c) g ( e s c k ~ - ( 2 a - 1 ) / ( 3 a - l '  

R ~ -  R~,~-f (11) 

Equations (9) and (10) can be transformed to expressions 
for correlation lengths ~T and CT** of composition 
fluctuation, if the mean-fieId exponent is assumed for 
divergence of ~r: 

~r = Rg(c) ( IZ-  Zd)-, /2 (12) 
x/3  \ Z, / 

That is, from equations (9)-(12) and the equation: 

¢(c) / c "~-o1~3,-1) 
- K¢t-~**) (13) 

RF 

for the correlation length ~(c) of concentration fluctuation 
in a good-solvent semidilute solution far from the critical 
point, we obtain: 

¢(c) 4nK¢(cc'~ -t/(3"-t, (14) 
33- I<2. \ 7 /  

¢3*  -\kU;V \7 /  (15) 
where K¢ is another universal constant. K R and K¢ 
have been calculated by the direct renormalization 
theory ~'15'26 to be 1.4 and 0.5, respectively. With 
numerical values for a, KR, K¢ and c~=0.11, equations 
(14) and (15) yield: 

~(C) / C  '~ - 1.31 
4" - 3 . 2 1 ~ )  (16) 

~(C) -- 5.80 × 10- 6(Ce ~ -  9"58 (17) 
\7/ 

respectively. The value of cJc* was estimated to be 12.9 
in the present case by using the values M w = 3.55 x 105 
and R F '~ 27.5 nm (ref. 27). Then, we obtain ~(c)/~r. = 0.113 
and ¢(c)/~r** = 1.34 x 10- ~5. Since the experimental value 
of ~ is considered to be almost identical with ~r, we can 
compare the value range of ~(c)/~, which is listed in 
Table 2, with ~(c)~r. and ~(c)/~r**. Higher bounds of 
~(c)/~ are sufficiently smaller than ~(c)/~r. and lower 
bounds are extremely larger than ~(c)/~r**. Therefore, 
we have to carry out measurement at much lower 
temperatures or in a more concentrated solution in order 
to observe the mean-field region. 
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